

SkySight Soaring Weather

SkySight 101:

A Glider Pilot's Beginner Guide

Matthew Scutter, Jon Pring, Sophie Curio

Updated: February 2024

Contents

1	Introduction							
	1.1	What is Skysight						
	1.2	How to use this manual						
		1.2.1 Updates						
		1.2.2 Screenshots						
	1.3	How to access SkySight						
		1.3.1 Compatibility						
		1.3.2 Naviter SeeYou PC						
		1.3.3 Naviter Oudie						
		1.3.4 LXNav LX80xx/90xx						
	1.4	Contacting SkySight						
		1.4.1 Product Support						
		1.4.2 Feedback and Suggestions						
2	Get	ting Started 3						
_	2.1	Selecting Aircraft Type						
	2.2	User Interface						
	2.2	2.2.1 Desktop User Interface						
		2.2.2 Mobile User Interface						
	2.3	Map Navigation						
	2.0	2.3.1 Map Zoom and Navigation						
		2.3.2 Forecast Updates						
		2.3.3 Colour Scale						
		2.3.4 Colour Transparency for Colour-Blind Users						
		2.3.5 Exact Forecast Value						
		2.3.6 Airspace View						
		2.3.7 Satellite View						
		2.3.8 Significant Weather						
		2.3.9 Nothing displayed on the map?						
3		Interactive Tools						
	3.1	Point Skew-T						
	3.2	Point Forecast						
	3.3	Point Windgram						
	3.4	Route Forecast						
	3.5	Wave Cross Section						
	3.6	3D Wave						
4	Adv	Advanced Features 1						
	4.1	Displaying Waypoints						
	4.2	Uploading IGC files for Task Analysis						
	4.3	Experimental Features						
	4.4	Aircraft-specific Features						
		4.4.1 Paraglider Launch Sites						
5	Account Settings 1							
	5.1	Aircraft Type						
	5.2	Default parameter on login						

	5.3 5.4	,	/Pilot Factor	
6	Get	ting th	ne best out of SkySight	15
	6.1	_	SkySight for Task Planning	
	6.2	_	fying Convergences	
	6.3		ing a weather model	
	0.0	DCICCUI	ing a weather model	. 10
7	Inte	gration	n with flight computers	18
	7.1	Navite	er Oudie	. 18
	7.2	LX80x	xx and LX90xx	. 20
Δ	Fore	ecast P	Parameters	21
			al	
	11.1	A.1.1	Potential Flight Distance	
		A.1.2	Cross Country Speed (XC Speed)	
		A.1.3	Thermal Strength & BS Ratio	
		A.1.4	Height of Thermals	
			Depth of Thermals(AGL)	
		A.1.5		
	4.0	A.1.6	Significant weather	
	A.2	Cloud		
		A.2.1	Cu Depth	
		A.2.2	Cu Cloudbase	
		A.2.3	Overdevelopment	
		A.2.4	Cloud Cover	
		A.2.5	CAPE / Storms	
		A.2.6	Rain	
		A.2.7	Surface Temperature	
		A.2.8	Surface Dewpoint	
	A.3			
		A.3.1	Barbs & Streams	
		A.3.2	Surface Wind	
		A.3.3	Thermal Layer Average Wind	22
		A.3.4	Thermal Layer Top Wind	22
		A.3.5	Convergence	22
		A.3.6	Ridge Lift	22
		A.3.7	Wind Shear	22
		A.3.8	MSL Pressure	22
	A.4	Wave .		23
		A.4.1	Vertical Velocity	23
	A.5	Genera	al	23
		A.5.1	Low level cloud cover	
		A.5.2	Mid level cloud cover	
		A.5.3	High level cloud cover	
		A.5.4	Thermal Hotspots	
		A.5.5	Turbulence (SFC-FL100)	
		A.5.6	Turbulence (FL100-FL250)	
		A.5.7	Rain last 72hrs	
		A.5.8	Turbulence (FL250-FL400)	
		A.5.9	Freezing Level	23 23
		7	TIEGOTIE DEVEL	/

$\Lambda.5.10$ Density Altitude (Surface) .	

1 Introduction

1.1 What is Skysight

SkySight is an interactive forecasting tool. It combines the latest forecast modelling technologies with an intuitive user interface, to provide high resolution forecasts and powerful flight planning tools.

1.2 How to use this manual

This manual gives an overview of SkySight. It aims to provide detailed instructions on how to use the interactive forecasting features in the browser and mobile versions. Detailed descriptions of all the forecast parameters are available in the appendix.

1.2.1 Updates

The software is browser based, therefore you will always be using the latest version. Please ensure that your browser is up to date to ensure the best compatibility.

For LXNav and SeeYou SkySight users, updates are integrated within the regular device firmware and software updates, available at http://gliding.lxnav.com and http://naviter.com.

1.2.2 Screenshots

This manual often uses screenshots to visualise features. There are correct at the time of publication. However, there may be differences based on the device, browser or screen resolution.

1.3 How to access SkySight

SkySight is available to access and subscribe at

http://skysight.io

This gives access to all available regions and forecasting tools with a single subscription.

If you have forgotten your password, please use the forgotten password link on the login page.

1.3.1 Compatibility

SkySight will work with all modern browsers, on all platforms. We recommend Chrome for the best compatibility. Our website is designed to work on all screen sizes, although some advanced features require larger screen sizes.

For mobile devices, SkySight is accessed via the browser and dedicated mobile website. We are focused on providing the best experience on all platforms, so we don't think an app is necessary.

1.3.2 Naviter SeeYou PC

SeeYou PC can connect with SkySight to provide forecast overlays on the native maps. This feature is available from SeeYou PC V8.0 onwards and can be used for task planning and post flight analysis. Please refer to the Naviter website at http://naviter.com for details of this feature.

1.3.3 Naviter Oudie

Weather data can be downloaded and displayed on the Oudie 2, Oudie IGC and Oudie N. You can find detailed instructions in 7.1 on page 18.

1.3.4 LXNav LX80xx/90xx

SkySight forecast overlays are available to LXNAV users who use the LX80xx and LX90xx series of navigational instruments. The WiFi module must be installed and software updated to the latest version. You can find detailed instructions on how to set up your device in 7.2 on page 20 and support for these devices can be found at http://gliding.lxnav.com

1.4 Contacting SkySight

1.4.1 Product Support

Please check the FAQ and this user manual before contacting SkySight support directly. If you have a query that is not covered by SkySight documentation, please contact support via the contact form at http://skysight.io/contact

1.4.2 Feedback and Suggestions

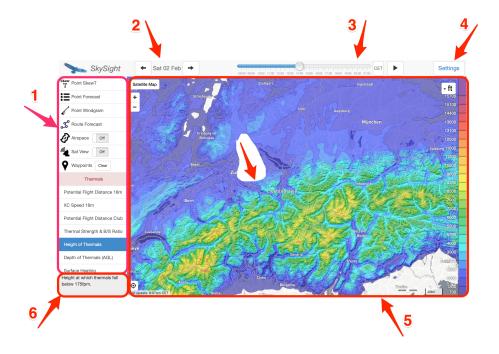
We are constantly looking to improve SkySight and always welcome any suggestions! Please send us any feedback to:

skysight@skysight.io

2 Getting Started

2.1 Selecting Aircraft Type

When SkySight is launched for the first time, it will prompt you to select your aircraft type. The options are hang glider, balloon, plane, paraglider or sailplane.



Some parameters will change depending on the aircraft type selected and some features are only available for certain aircraft types. You can change your aircraft type at any time (see section 5.1 on page 15). A description of aircraft-specific features can be found in section 4.4 on page 15.

2.2 User Interface

2.2.1 Desktop User Interface

When SkySight is launched, the following interface will appear.

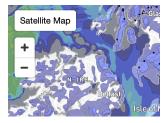
- 1. **Selection Bar** Use this to select the interactive tools or forecast parameters.
- 2. Date Use ← and → to scroll through to the desired day. Most forecast parameters are available up to 5 days in advance. A limited duration of historic forecasts are also available.
- 3. **Time of Day and Time Zone** The slider alters the time of day. The forecast can be animated using the ▶ button. There is also the option to change the time zone.
- 4. Settings This menu is used to change region, view account settings or log out.
- 5. **Map View** The map displays the forecast parameters overlaid on to the map in an easy to read colour scale. The map navigation features are detailed in 2.3 on page 5.
- 6. **Parameter Description** This gives a description of the forecast parameter currently selected.

2.2.2 Mobile User Interface

On mobile platforms, the user interface is optimised for mobile screen sizes. The primary functionality is available, however some advanced features may not be available in mobile view.

- 1. **Selection Menu** Press this to access the day selection, interactive tools and forecast parameters.
- 2. **Time Slider** This slider is used to change the time of day. The time zone setting can be accessed via "desktop view" on the mobile browser.
- 3. Date and Time View The current day and time are visible here.
- 4. **Settings** Use this to change the region and view account settings.
- 5. Scale Units Press this to cycle between metric and imperial units on the map scale.
- 6. **GPS Location** This button will enable current location on the map using the device geo-location method (GPS, WiFi or GPRS).

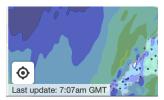
By enabling *desktop view* on mobile browsers, it is possible to access all advanced features available on the desktop version.


2.3 Map Navigation

The map section of the screen is the primary area to view forecasts. It is similar on both desktop and mobile versions. The map should update automatically once a different forecast parameter is selected or the time of day is changed.

2.3.1 Map Zoom and Navigation

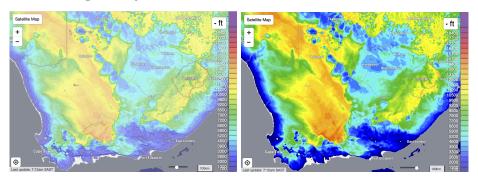
Navigating the map should be familiar for most users. Click and drag to pan the map.


The scale for the current zoom level is displayed in the bottom left of the map. Desktop users can scroll to zoom. Touch screen users should "pinch" to zoom. Alternatively, use the - and + symbols on either mobile and desktop devices.

Satellite map view can be toggled using the "Satellite" button in the top left. This will display a high resolution aerial photography of the map.

2.3.2 Forecast Updates

There are multiple forecast model runs throughout the day.



The latest forecast run time is displayed in the bottom left of the map. This is applicable to the current forecast parameter displayed on screen. This is only visible on desktop devices.

2.3.3 Colour Scale

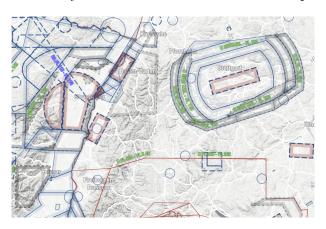
On the right of the map, the colour scale is visible. The units can be cycled between metric and imperial by clicking on the unit in the top right. This colour scale will change the range automatically based on the viewing area and forecast values for that day.

2.3.4 Colour Transparency for Colour-Blind Users

For colour-blind users, we have added an additional feature which changes the transparency of the forecast overlay. This helps to increase the vibrancy and contrast of the forecast. To change the transparency, move the slider at the bottom right of the map view.

2.3.5 Exact Forecast Value

When a forecast parameter is selected, right-clicking on the map will display the exact forecast value. In combination with the colour map, this can be used to build up a more detailed overview of the forecast.


In mobile view, hold-press for 2 seconds on the point to use this feature.

This point will remain on the map until it is closed by the x. Change the time of day to see how the day develops over a specific point.

2.3.6 Airspace View

Airspace can be displayed on the map using the Airspace toggle. This should be considered indicative and pilots should always check local charts and NOTAMs prior to flight.

2.3.7 Satellite View

Recent satellite imagery can be toggled using Sat View. This will display up-to-date satellite imagery of cloud cover over the map, and hide the current data on the map. This is available for past and present time of day.

By selecting the Cloud Cover parameter and toggling the Sat View, the forecast can be compared to the actual satellite images.

2.3.8 Significant Weather

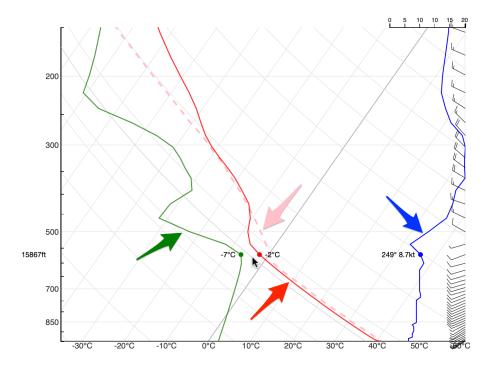
The Significant Weather function will give an overview of the weather in the task area. By displaying various icons, it will display weather events, such as clouds, rain, wind or storms.

• Scattered cumulus

- Cumulus
- Congested cumulus
- • Overdevelopment
- 🧖 Rain
- Storm potential

2.3.9 Nothing displayed on the map?

If there is nothing displayed on the map, it may be for one of the following reasons.


- The date is out of forecast range. Please select a day closer to today's date.
- A different region is selected. Check that the correct region for the current map view is selected in the settings menu.
- The parameter type is out of forecast range. Some parameters are only forecast a limited number of days ahead, due to being unreliable or too resource intensive beyond a few days.
- The overlay transparency may be set to zero. Check the Colour Transparency section 2.3.4 on page 6 for how to adjust this.
- The satellite view option may be turned on. Check the Satellite View section 2.3.7 on page 7 for how to turn this off.
- Sometimes the data set may be large and hence be slow to load on a poor internet connection. Please be patient to allow for the data to download.

3 Interactive Tools

SkySight includes a number of interactive tools designed to aid forecasting and route planning. This section details the basics on how to use these tools.

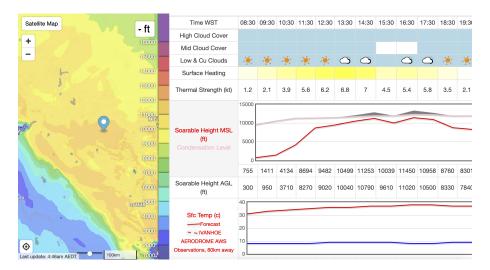
3.1 Point Skew-T

This feature displays a Skew-T log-P diagram for any point on the map at any time of day.

- **✓ Temperature Curve** The forecast actual temperature changing with height.
- **Dewpoint Curve** The forecast dewpoint temperature changing with height.
- ✓ Wind Strength The forecast wind strength changing with height. Wind barbs are also shown.
- Virtual Parcel A simulated hot air parcel rising through the boundary layer. Used to predict storm development potential.

To use the Skew-T tool:

- 1. Select the T tool from the selection menu.
- 2. Click on the map to select the desired point for the Skew-T forecast.
- 3. Change the time on the top slider to see how the forecast develops over the day.
- 4. Move the mouse over the chart to see numerical temperature and wind for a given height.
- 5. The Skew-T forecast can be closed by clicking on the 🗙 in the top right of the screen.

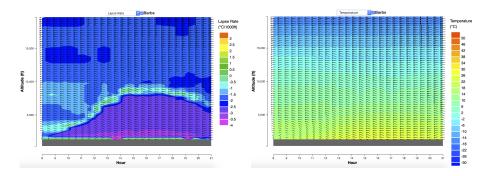

The Skew-T plot is useful for validating understanding of the forecast, and showing the moisture levels in upper air-masses to help predict over-development and cloud cover.

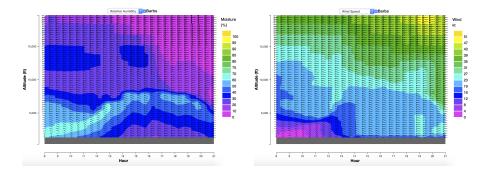
3.2 Point Forecast

The point forecast tool makes it easy for the development of the conditions over the whole day to be summarised quickly. Cloud cover, thermal activity and temperatures are both visualised and displayed as values.

To use the point forecast:

- 1. Select the Point Forecast tool so that it is highlighted in the selection menu.
- 2. Click a point on the map to display the point forecast for that location.
- 3. Scroll down to view all the parameters.
- 4. The point can be moved by dragging the blue pointer on the map to the left. On small screens and mobile versions, the map will not be displayed. Close the point forecast and re-select a new location to move the point.
- 5. Close the point forecast by clicking on the \times .

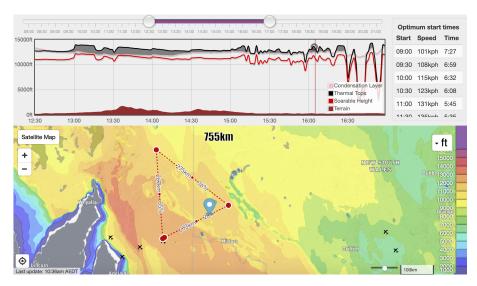



The cloud cover is visualised in the top rows with a colour gradient. Blue represents clear weather, whites are thin cloud, and darker greys indicate thick cloud.

Cumulus depth is represented on the convective graph with a dark grey shaded area above the condensation line. Where there is no dark grey shading, this suggests blue thermals.

3.3 Point Windgram

The windgram shows the development in the lapse rate, temperature, relative humidity and wind throughout the day and with height at a point. This feature is useful to visualise inversion levels, moisture layers and wind shear.



To use the windgram:

- 1. Select the Windgram icon from the selection bar, so that it is highlighted blue.
- 2. Click on the map to select the desired point for the forecast.
- 3. Use the top drop down menu to change the parameter. Four different parameters are available including Lapse Rate, Temperature, Relative Humidity and Wind Speed.
- 4. The wind barbs can be shown or hidden using the check box next to the drop down menu.
- 5. Close the windgram by clicking on the \times .

3.4 Route Forecast

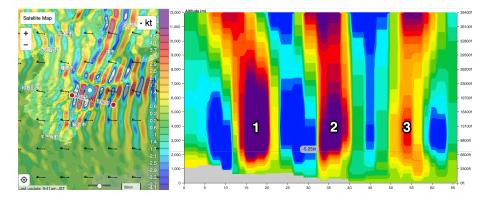
The route forecast tool is able to estimate cross country speeds and summarise the forecast conditions over a planned task. It is a very useful tool to use during task planning and for competitions. By moving the points, it is easy to find the fastest possible tasks of the day.

To use this tool:

- 1. Select the Select Route Forecast tool from the side bar, so that it is highlighted in blue.
- 2. Click on the map to select the desired start point. You can now draw your own task or select from the suggested routes (green = short task, suitable for club pilots in the

afternoon, yellow = intermediate task, launching earlier and landing later, red = task that is expected to utilise the entire day, suitable for experienced pilots who wish to fly in difficult conditions).

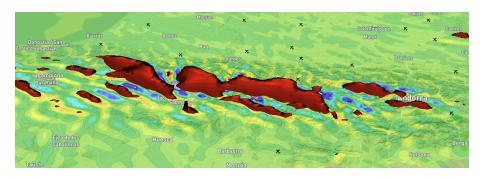
- 3. To draw your own task, click again on the map to place turn points. Repeat as necessary.
- 4. The route is confirmed by either returning to the start point, or by pressing 'ESC' to finish the task. The optimum start times, forecast overview, optimal route (black line) and task length for the route will then be displayed.
- 5. SkySight will automatically select the best window for the day, however it is possible to customise the task window by dragging the red start and finish times.
- 6. After confirming the route, it can be modified by clicking and dragging on the turn points. New turn points can be added by clicking and dragging on the small red circles on the halfway point of each leg.
- 7. By hovering over the route summary graph, this will show an icon on the map with the estimated location on task at that time of day. The summary graph can either display the direct route or the optimised route which can be selected by clicking either 'Point-to-Point' and 'Optimized' in the upper left corner.
- 8. The drawn route will save and will be synced across all your devices. To remove the task from the menu, simply click . To download the task, click Download .
- 9. The route forecast can be quit by clicking on the Route Forecast icon from the side bar again.


The route forecast tool works best with thermal tasks. The grey shaded area on the graph illustrates the depth of the cumulus. The task speeds indicated on the optimal start time dialogue are based on an 18m Ventus 2 @ 45kg/sqm flying with optimal McCready settings.

Check section 6.1 on page 15 for tips on how to use the route forecast tool for task planning.

3.5 Wave Cross Section

The wave cross-section tool allows wave characteristics over height to be visualised along a route. This feature is only available on desktop versions.



To access this feature:

- 1. Select the X Wave X-Section tool in the side bar under the Wave section.
- 2. Click on the map for the desired route start point.
- 3. Click again on the map for the end point. The cross section will then appear.
- 4. On large screens, the map will appear next to the cross section. Click and drag the route start and end points to move the route. Hovering over the cross section will show a vertical velocity value and the position along the route on the map.
- 5. The image shown will be a snapshot on a particular time. Change the time of day in the top bar to look at the development of the wave.
- 6. To close the cross section, click on the 🗙 in the top right of the screen.

3.6 3D Wave

The 3D Wave feature displays the wave in three dimensions, which allows visualisation of the vertical and horizontal dimensions of the wave system. It can help develop an understanding of how the wave develops with altitude, as well as where it is going high.

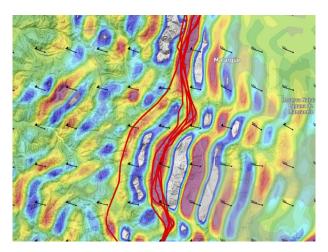
- 1. Click on the \$\hfrac{1}{\infty}\$ 3D Wave to display the wave in the selected area.
- 2. You can zoom in, move the map around and view the structure of the wave from different directions.
- 3. To close the 3D Wave, click on the * in the top right of the screen.

4 Advanced Features

4.1 Displaying Waypoints

To aid task planning, SkySight includes the option to upload waypoints. These will be displayed as points on the map. It may be necessary to zoom in to see the full waypoint names.

To upload, click on the \(\begin{align*} \pi \) Waypoints menu and select the desired waypoint file from the device. The upload function supports SeeYou cup files only.


It is only possible to upload one waypoint file at a time, and the waypoints will only be visible on the device that they have been uploaded from.

If waypoints have been added, the route forecast tool (see 3.4 on page 11) will automatically jump to the nearest waypoint while drawing the task. The suggested routes will utilise the available waypoints.

4.2 Uploading IGC files for Task Analysis

SkySight can be used as a post-flight analysis tool. This is an especially useful tool to confirm in-flight weather observations, and to help understand their development and the interpretation of these in the SkySight forecast.

Click on the Go IGC Upload tool and select an IGC file from your device. This will overlay the trace on to the map, allowing a comparison between the forecast parameters and flown task.

Please note that to get to the correct date, this must be manually navigated to. At present, there are no features to replay the tasks in real time within SkySight, beyond the displayed trace visualisation.

4.3 Experimental Features

SkySight is always under development, and exciting new features are being added all the time.

4.4 Aircraft-specific Features

Some parameters and features, such as the PFD, XC Speed and Route Forecast will take the aircraft type into account. some parameters are only viewable for certain aircraft.

4.4.1 Paraglider Launch Sites

Paraglider launch sites are shown on the map as . The fill colour indicates whether a specific site is suitable for a launch: green indicates good conditions, orange indicates potentially suitable conditions, blue indicates no significant wind and red indicates that the conditions are not suitable. The calculation of this considers wind, rain, showers and thermals. The wind barb indicates the wind direction and strenght. This data is taken from https://paraglidingearth.com/. If your launch point is missing, you can add it to Paragliding Earth.

5 Account Settings

SkySight allows you to personalise some settings. These can be changed under Settings/Account.

5.1 Aircraft Type

You can choose between sailplane, paraglider, hang glider, balloon or plane. This changes some of the paramters, such as Potential Flight Distance.

5.2 Default parameter on login

This changes the parameter displayed on the landing page.

5.3 Glider/Pilot Factor

The glider/pilot factor lets you adjust for high performance gliders and experiences pilots. This adjust the potential flight distance, the route forecast speed calculations, suggested routes and the suggested tasks. Higher is faster, 100=Ventus 2-18 @ 45kg/sqm or intermediate HG/PG.

5.4 Weather/Task Notifications

Select on which days you would like to receive noticiations about saves tasks.

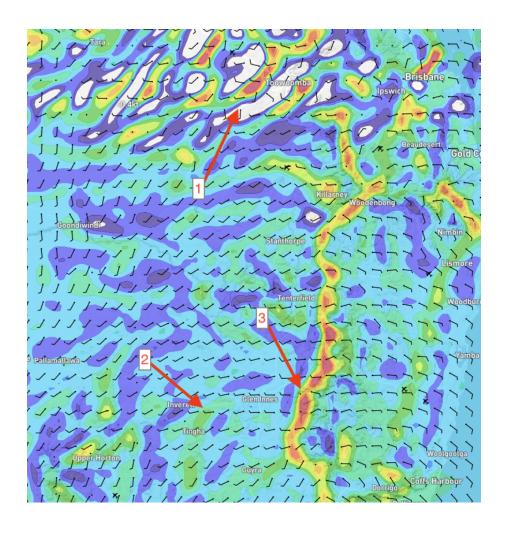
6 Getting the best out of SkySight

6.1 Using SkySight for Task Planning

SkySight has a lot of useful weather information available, however interpreting it can sometimes be difficult. These basic steps below aim to get you started with using SkySight for task planning.

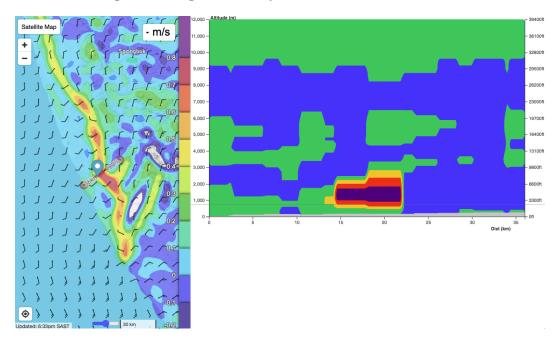
- 1. Determine the start of thermals. Do this by checking the thermal heights and strengths throughout the morning. Once the thermal heights and strengths are sufficient, judge this as the beginning of the day.
- 2. Determine the end of thermals. Use the same method as above to determine the end of the day, and therefore the length of the soaring window.

- 3. Check the potential flight distance. Look at this parameter over the planned task areas in combination with the soaring window worked out in (2), to calculate the required task speeds.
- 4. Check the Cu Cloudbase throughout the day to see how convection develops. Note that positive values indicate cumulus.
- 5. Check the Cloud Cover parameters to look for low, mid and high level cloud development and movement, which may affect thermal strengths.
- 6. Check the wind parameters, which may be an indication of streeting, wave, or convergence.
- 7. Having looked at all these forecasting parameters, use the route forecasting tool to plot a proposed route. The route forecast will give an estimated task speed based on different start times, and display an overview of the conditions over the task.
- 8. The final 'gotcha' parameters to check include CAPE for storms potential, overdevelopment and rain.
- 9. It is always useful to validate understanding of the forecast using the Point Skew-T tool. For example, this can illustrate moisture in the airmass, changing airmasses, and vertical development.



Never want to miss a good flying day? Turn on notifications for a task. Simply draw a task and then select the $\, \blacksquare \,$ to receive an email when this task is achievable.

6.2 Identifying Convergences


Convergences are not always easy to identify. Due to the high sensitivity of this parameter, other effects, such as outflow from storms, streeting or even ridge lift can be picked up.

- 1. Classic example of outflow from storms
- 2. Example of undefined noise
- 3. Typical convergence line

Convergences typically develop when two air masses meet. Displaying wind barbs or streams can therefore help identify the convergence.

The Wave X-section tool can be used on convergences to help identify the exact location and horizontal dimension. By moving the time slider, it can further be used to visualise the development of the convergence throughout the day.

6.3 Selecting a weather model

SkySight offers visualisation of government-run weather models in Europe (ICON) and North America (HRRR). These can be used to cross-check or second opinion in difficult forecasting circumstances, for example when situations are rapidly changing due to their fast update rates. Select the model you wish to view by clicking SkySight or ICON/HRRR.

This feature is specific to Europe and North America.

7 Integration with flight computers

7.1 Naviter Oudie

The integration with Oudie allows users to display various weather maps in flight. The following parameters are available:

- 1. Convergence
- 2. XC Speed Hourly
- 3. Waves
- 4. Wind

To download the weather layers:

- 1. Connect your Oudie to your PC or Mac and open Naviter Updater
- 2. Log into your SeeYou account (cloud or desktop version) und navigate to the 'Settings' menu. Enter your email in the 'Weather SkySight Integration' field and click 'Update'.

Make sure to enter the email address that is linked to your SkySight account.

- 3. Navigate to 'My Devices' and select which forecast regions you wish you see on your device. You can select the region(s) of interest under 'Weather Forecast Regions'.
- 4. Open the Naviter Updater and click the 'Update' button under 'SeeYou Cloud'. Once the weather for the day has been downloaded, it should say 'up-to-date'.

- 5. Disconnect your device and launch SeeYou Mobile
- 6. Navigate to the main menu and click on the Weather button. You should now see the

above mentioned parameters

7. Select the parameters you wish to display and return back to the map

7.2 LX80xx and LX90xx

To connect SkySight to your LX device:

- 1. Visit https://cs.lxnav.com and log in to your account
- 2. Select the 'Services' tab and click on 'Add Service' to add SkySight to your account
- 3. Log in with your SkySight username and password

There are two ways to display the SkySight layers on your device. You can either set it up on your device or using LX Styler.

To modify the weather layers directly on the device, select the Graphics menu and click on the 'Weather' option. This will open a menu in which you will be able to select which layer you want to display on the map. This weather layer will be displayed on all pages.

Changing the history span edits the time window displayed on the map - if this is set to 0, a static image will be displayed which corresponds to the current time.

Open LX Styler, which can be downloaded from https://gliding.lxnav.com/software/lx-styler/. Double-click on the page that you want to modify. Click once on the screen and select the layer you wish to add in the menu bar on the left under 'Weather'. Make sure the 'Use map settings only for current page' is set to 'yes' unless you want to display the map on every page.

To add an info box showing what is being displayed on the map, select 'Data' from the menu bar on the top of the page, navigate to 'Misc' or and select 'Weather Info' box. This will display the time and the name of the forecast that is currently being displayed.

Setting up SkySight layers using LX Styler has the advantage that you can select which pages and maps you want the weather displayed on. You can for example display the rain radar on one page, satellite picture on the next and convergence on a third page without having to change the settings each time you want to view a new parameter.

A Forecast Parameters

A.1 Thermal

A.1.1 Potential Flight Distance

Distance you might be expected to fly according to your glider/pilot factor (see section 5.3 on page 15), taking off at first thermals and landing at last, assuming MacCready theory in high conditions and slower in weak.

To receive an email notification when the potential flight distance exceeds a certain parameter, click the • button and click on the point on the map you wish to watch. You can name the alert, adjust the distance or remove it on the new menu item under 'Potential Flight Distance' in the menu bar.

A.1.2 Cross Country Speed (XC Speed)

XC Speed an 18m Ventus 2 @ $45 \,\mathrm{kg/sqm}$ might be expected to fly, in an hour, according to Macready

A.1.3 Thermal Strength & BS Ratio

Strength of thermals, with increasing stipple for how broken the thermals will be (Buoyancy Shear), dense stipple possibly being unsoarable.

A.1.4 Height of Thermals

Height at which thermals fall below 175fpm.

A.1.5 Depth of Thermals(AGL)

Height above ground at which thermals fall below 175 fpm.

A.1.6 Significant weather

Significant weather overlaid on depth of thermals.

A.2 Cloud

A.2.1 Cu Depth

Difference between the top of predicted thermals and the condensation layer, increasingly positive values indicating more likely cumulus, negative values indicating unlikely cumulus.

A.2.2 Cu Cloudbase

In areas where cumulus is expected to form, the height of that cumulus above sea level. Grey indicates possible cloud.

A.2.3 Overdevelopment

Shows areas likely to overdevelop, as a percentage of 2000ft depth of overdevelopment. 0-40 indicates mild, 40-65 indicates substantial and 65+ may be unsoarable.

A.2.4 Cloud Cover

Cloud cover forecast, divided into Low (0-4000m), Medium (4000-8000m) and High (8000m+).

A.2.5 CAPE / Storms

Convective Available Potential Energy. Higher values indicate greater potential instability, larger updraft velocities within deep convective clouds, and greater potential for thunderstorm development.

A.2.6 Rain

Rain accumulated over the last half hour.

A.2.7 Surface Temperature

The temperature at a height of 2m above ground level.

A.2.8 Surface Dewpoint

The dew point temperature at a height of 2m above ground level.

A.3 Wind

A.3.1 Barbs & Streams

A.3.2 Surface Wind

The speed and direction of the wind 2m above the ground.

A.3.3 Thermal Layer Average Wind

The speed and direction of the vector-averaged wind in the BL.

A.3.4 Thermal Layer Top Wind

The speed and direction of the wind at the top of the BL.

A.3.5 Convergence

Maximum up/down motion within the Boundary Layer, as created by horizontal wind movement.

A.3.6 Ridge Lift

Areas of predicted ridge lift.

A.3.7 Wind Shear

Difference in wind between the top and bottom of the Boundary Layer.

A.3.8 MSL Pressure

Atmospheric Pressure at Mean Sea Level in mBar.

A.4 Wave

A.4.1 Vertical Velocity

Vertical velocity at specified pressure altitude, plus wind speed/direction barbs. Used for wave/convergence. Grey indicates possible cloud layers.

A.5 General

Ob diese Parameter zu sehen sind, ist abhängig vom ausgewählten Flugzeugtyp und der Region.

A.5.1 Low level cloud cover

Low cloud cover percentage, of any type, eg. Cu,Sc,St (1013hPa - 642hPa, 0-4,000m, 0-FL130)

A.5.2 Mid level cloud cover

Mid level cover cloud percentage, eg. Ac,As,Cb (642hPa - 350hPa, 4,000-10,000m, FL130-FL330)

A.5.3 High level cloud cover

High cloud cover percentage, eg. Ci,Cs (350hPa-150hPa, 10,000m-20,000m, FL330-FL650)

A.5.4 Thermal Hotspots

Hotspots from thermal.kk7.ch

A.5.5 Turbulence (SFC-FL100)

Turbulence severity below 10,000ft, including thermal, mountain wave, convective effects

A.5.6 Turbulence (FL100-FL250)

Turbulence severity below 25,000ft, including thermal, mountain wave, convective effects

A.5.7 Rain last 72hrs

Rain accumulated last 72 hours, as observed and calculated by the Bureau of Meterology.

This feature might only be available in certain areas.

A.5.8 Turbulence (FL250-FL400)

Turbulence Severity above 25,000ft, including mountain wave and convective effects

A.5.9 Freezing Level

Freezing level.

A.5.10 Density Altitude (Surface)

Altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level.